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a  b  s  t  r  a  c  t

We  report  the  development  of an  adaptive,  multi-parameter  battery  state  estimator  based  on the  direct
solution  of  the  differential  equations  that  govern  an equivalent  circuit  representation  of  the battery.
The  core  of  the  estimator  includes  two  sets  of  inter-related  equations  corresponding  to  discharge  and
charge events  respectively.  Simulation  results  indicate  that  the  estimator  gives  accurate  prediction  and
numerically  stable  performance  in the  regression  of  model  parameters.  The  estimator  is  implemented  in a
eywords:
attery state estimator
SE algorithm
OC (state of charge) estimation
OP (state of power) estimation
quivalent circuit model

vehicle-simulated  environment  to predict  the  state  of  charge  (SOC)  and  the  charge  and  discharge  power
capabilities  (state  of  power,  SOP)  of a lithium  ion  battery.  Predictions  for the  SOC  and  SOP  agree  well
with  experimental  measurements,  demonstrating  the  estimator’s  application  in  battery  management
systems.  In  particular,  this  new  approach  appears  to be  very  stable  for high-frequency  data  streams.

© 2011 Elsevier B.V. All rights reserved.
. Introduction

Lithium ion batteries have attracted great interest for automo-
ive applications due to their high energy and power density, wide
emperature range, and long cycle life [1–7]. In order to realize the
ull benefit of these traction batteries, efficient energy management
s essential. In many battery-powered systems such as electric vehi-
les (EV) and hybrid electric vehicles (HEV), energy efficiency is
nhanced by intelligent management of the electrochemical energy
torage system [8].  These applications require a battery state esti-
ator (BSE) to ensure accurate and timely estimation of the state

f charge (SOC), the charge and the discharge power capabilities
SOP), and the state of health (SOH).

Various battery models have been studied within the frame-
ork of a BSE [9–24]. A physics based electrochemical model may

e able to capture the temporally evolved and spatially distributed
ehavior of the essential states of a battery [9,10,23]. It is built upon
undamental laws of transport, kinetics and thermodynamics, and
equires inputs of many physical parameters [24]. Because of its
omplexity, relative long-simulation time, and difficult control of

he output, this kind of model may  be more suitable for battery
esign and analysis rather than a BSE. A (zero dimensional) lumped
arameter approach based on an equivalent circuit model may  be

∗ Corresponding author. Tel.: +1 310 317 5183; fax: +1 310 317 5840.
E-mail address: swang@hrl.com (S. Wang).

378-7753/$ – see front matter ©  2011 Elsevier B.V. All rights reserved.
oi:10.1016/j.jpowsour.2011.06.078
more suitable for a practical BSE due to ease of implementation.
The single RC circuit model discussed in this paper is a simple and
apparently robust approach that has been studied for the afore-
mentioned purposes of a BSE [14,21,22,25,26]. It should be noted
that this approach is fundamentally correct only when the battery
is exposed to small signal perturbations around equilibrium. Highly
non-equilibrium behavior of the battery is difficult to address. For
such behavior, more physical effects need to be included along
with a more detailed model, at the expense of the simplicity and
robustness [11–13,20].

Many state estimators employ a superposition integration (SI)
scheme [25,27–30] to predict in real-time the SOC, SOP, and
SOH. This approach has been applied to Li-ion (lithium ion), lead
acid, and NiMH batteries wherein the SI algorithm is based on
a simple one-RC-circuit model of the battery as shown in Fig. 1.
Inputs to the algorithm include the battery current, voltage, and
temperature; the algorithm is used to regress the model param-
eters such as the open circuit voltage (Voc), the high-frequency
resistance (R), the charge-transfer resistance (Rct) and capaci-
tance (C). SOC, SOP and SOH can then be determined using the
model parameters. Due to limited memory storage and comput-
ing speed of embedded controllers employed in many applications,
the algorithm has been implemented with recursive relations

using circuit parameters from previous time steps and experimen-
tal measurements acquired in the current-time step to regress
new circuit parameters. The method of weighted recursive least
squares (WRLS) is employed in the SI algorithm, wherein input

dx.doi.org/10.1016/j.jpowsour.2011.06.078
http://www.sciencedirect.com/science/journal/03787753
http://www.elsevier.com/locate/jpowsour
mailto:swang@hrl.com
dx.doi.org/10.1016/j.jpowsour.2011.06.078
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The WRLS method is applied to regress the model parameters.
orresponds to charging.

ata is damped exponentially over time. As a result, newer
nformation has a preferential impact on the value of regressed
arameters.

We  have found that the aforementioned SI algorithm becomes
nstable at high sampling rates (e.g., for date-sampling frequen-
ies above 10 Hz). As part of this work, the SI algorithm was
pplied to amorphous carbon/NMC (nickel, manganese, cobalt
xide) batteries (Hitachi cells intended for GM’s high-voltage
elt/Alternator/Starter application, termed BAS+) and tested in a
imulated HEV environment [31]. We  also found that the numerical
tability of the regression of the model parameters was sensi-
ive to initial (seed) values. This sensitivity often led to numerical
nomalies in the parameter regression. Both of above mentioned
nstabilities might be due to the fact that the SI algorithm is intrin-
ically a nonlinear model. Inside the model a “measured” term is
he function of the parameter to be determined [25]. In addition,
he current SI algorithm uses only one set of model parameters to
escribe both the charge and discharge events for the battery. In
rder to accommodate the possibility of different electrode kinet-
cs processes for charge and discharge [32,33],  the SI algorithm
mployed a fixed parameter r = Rct, charge/Rct, discharge, which repre-
ented the ratio between the values of Rct for cell charge relative
o discharge. Similarly, the charge-transfer time-constant, which is
he multiplication of the Rct and C, was assumed to be the same for
oth events.

In order to address these shortcomings, we have developed
n improved battery state estimator, which we refer to as the
irect differential (DD) algorithm. Similar to the SI algorithm,
he DD algorithm employs the one RC-circuit model shown in
ig. 1 and the WRLS method to regress model parameters in real-
ime. Hence, the DD algorithm outputs the SOC, SOP, and SOH
deduced from changes in the regressed impedance parameters
elative to those of a new, healthy battery) with the inputs of
he voltage, current and temperature. Unlike SI, the DD algorithm
s a strict linear model. Consequently, we have observed much

ore stable parameter regression upon application to simulated
ata. The algorithm treats the charge and discharge events sepa-
ately; therefore there is no need for the fixed parameter r. Overall,
mplementation of the DD algorithm showed superior performance
ompared with the SI algorithm, including less sensitivity to ini-
ial (seed) parameter values and better stability at high sampling
ates.

This report is organized as follows. Section 2 details the deriva-
ion of the DD algorithm; Section 3 overviews the algorithm’s
egression capability through the use of simulated data; Section
 describes the experimental setup including essential hardware
nd software elements; and experimental results are presented
nd discussed in Section 5. These include parameter regression in
urces 196 (2011) 8735– 8741

real-time, SOC prediction via Coulomb titration results, and 2 s and
10 s power projections. Finally, summary and open questions are
provided in Section 6.

2. The direct differential algorithm

The application of Kirchhoff’s circuit laws using the one RC-
circuit model in Fig. 1 produces the following differential equation:

V = (R + Rct)I + RRctC
dI

dt
− RctC

dV

dt
+ Voc (1)

All of the symbols in the equation are defined in Fig. 1; V and I
are measured inputs (their time derivatives being derived directly
from measurements) and R, Rct, C, and Voc are model parameters
regressed at each time step. Therefore, the formalism corresponds
to a parameter identification problem in the control theory [34].
Positive currents correspond to charge (cf. Fig. 1). In order to
address the differences between the charge and discharge kinetic
processes, Eq. (1) is expanded into the following:

V =
[

(R + Rct)I + RRctC
dI

dt
− RctC

dV

dt
+ Voc

]
c

+
[

(R + Rct)I + RRctC
dI

dt
− RctC

dV

dt
+ Voc

]
d

= (Rc + Rct c)Ic + RcRct cCc

(
dI

dt

)
c
− Rct cCc

(
dV

dt

)
c
+ Voc c

+ (Rd + Rct d)Id + RdRct dCd

(
dI

dt

)
d

− Rct dCd

(
dV

dt

)
d

+ Voc d

(2)

In this equation, all model parameters and variables with the
subscript “d” are associated with the discharge process, while those
with the subscript “c” are with the charge process. Unlike the
aforementioned SI algorithm, the DD algorithm explicitly treats
the discharge and charge cases separately. The parameters are
regressed by applying the measured values of the current I and volt-
age V of the battery in real-time. The derivatives of the current and
voltage over time are approximated with the difference equations;
i.e., dI/dt = (I(t) − I(t − �t))/�t  and dV/dt = (V(t) − V(t − �t))/�t. (A
central difference formulation can be employed to achieve higher
numerical accuracy.) If the current I is positive (charging), Ic = I,
(dI/dt)c = dI/dt, (dV/dt)c = dV/dt,  and all variables associated with dis-
charge are set to zero. The same convention holds for discharge
currents. In the application to the Li-ion batteries of this work, we
simplify Eq. (2) by assuming Rd = Rc = R since the observed difference
between the high-frequency-impedance for charging and discharg-
ing events is small. Fig. 2 depicts the cell potential of the Li-ion
battery as a function of SOC. Since there is only slight hysteresis at
the C/3 rate, it is reasonable to assume that the hysteresis is min-
imal for the Voc vs. SOC relationship; hence, Voc c = Voc d = Voc. The
final equation of the DD algorithm for the Li-Ion battery estimator
becomes:

V = (R + Rct c)Ic + RRct cCc

(
dI

dt

)
c
− Rct cCc

(
dV

dt

)
c

+ (R + Rct d)Id + RRct dCd

(
dI

dt

)
d

− Rct dCd

(
dV

dt

)
d

+ Voc (3)
The method is briefly described as follows. Consider a linear dynam-
ical model with input variables {xl(t), l = 1, 2, . . .,  L} and output
variable y(t) and assume these variables are sampled at discrete
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imes {tj, j = 1, 2, 3, . . .,  N} and further assume that the sampled
alues can be related through the linear equation

(tj) =
L∑

l=1

mlxl(tj) (4)

here {ml, l = 1, 2, . . .,  L} are the L parameters to be identified. In
he WRLS method, the parameters are determined by minimizing
he sum of the weighted square of the error terms: [25]

 =
L∑

l=1

εl =
L∑

l=1

N∑
j=1

�N−j
l

[
y(tj) −

L∑
l=1

mlxl(tj)

]2

, (5)

here {�l, l = 1, 2...L} are the L exponential forgetting factors for
ime-weighting data. A larger weight factor �l gives rise to a larger
rror term ε and thus more influence with regard to evaluating
he parameter ml. The approach we employ allows for multiple
orgetting factors, which is described in more detail in Ref. [25] and
eferences therein. The following assignments are made:

y(t) = V(t)

x1 = Ic m1 = R + Rct c

x2 = Id m2 = R + Rct d

x3 =
(

dI

dt

)
c

m3 = RRct cCc

x4 =
(

dI

dt

)
d

m4 = RRct dCd

x5 =
(

dI

dt

)
c

m5 = Rct cCc

x6 =
(

dI

dt

)
d

m6 = Rct dCd

x7 = 1 m7 = Voc

(6)

The seven ml parameters are updated at each time step, based on
hich model parameters are being regressed. Using the regressed
odel parameters, we deduce the SOC and SOP with methods used

reviously [29] and summarized as follows:

OC = w(SOCC ) + (1 − w)(SOCV ) (7)

In this equation, w is a weighting parameter that is set as an
nput, SOCc is the state of charge as calculated by charge integration,
nd SOCv is related to Voc by means of the Voc vs. SOC curve depicted
n Fig. 2. A curve-fit to the average of the charge and discharge
urves was employed for the look-up table for the SOCv estima-
ion in the DD algorithm. SOCc is calculated real-time in recursive
ashion:

OCc(t) = SOC(t − �t) + 100I(t)�t

Ahnominal
(8)

In the above equation, the nominal capacity Ah is the Ampere-
ours of capacity the battery delivers when discharged from 100%
o 0% SOC at low rates. The factor 100 is employed to keep a con-
istent percent basis. We  ignore the self-discharge and current
nefficiencies.

The SOP is calculated by estimating the charge and discharge
ower capabilities in real-time. The charging power capability is
btained when the battery voltage is set to its maximum value,
nd the discharging power capability is obtained when the voltage
s set to its minimum. For example:
charge(discharge)(t) = Icharge(discharge)(t)Vmax(min) (9)

With the updated parameters and the current I and voltage V,
e can deduce I(t) once the constant voltage is set at its maximum
Fig. 2. The measured data of the cell potential of the lithium ion battery as a func-
tion of SOC. The SOC was deduced by coulomb counting. The measurements were
conducted at C/3 rate and at room temperature.

or minimum value. For the charge current:

Icharge(t) = Vmax − Voc

R + Rct c

+
(

Vmax − V + IR

R
− Vmax − Voc

R + Rct c

)
exp

(
−R + Rct c

RRct cCc
t
)
(10)

and for the discharge current:

Idischarge(t) = Vmin − Voc

R + Rct d

+
(

Vmin − V + IR

R
− Vmin − Voc

R + Rct d

)
exp

(
−R + Rct d

RRct dCd
t
)

(11)

3. Testing the DD algorithm with simulated data

The previous section summarizes the DD algorithm including
formulas and procedures used for SOC and SOP prediction. In order
to examine the regression accuracy of the DD algorithm, software
implemented within a test environment was  employed along with
simulated data. The procedure for the simulation is as follows. First,
values are prescribed for model parameters of the RC circuit. Next,
based on the values of I(t), voltage data V(t) are determined, and
the calculated values for I(t) and V(t) are employed for real-time
regression. Finally, the effectiveness of the algorithm is assessed by
comparing the regressed parameter values to the prescribed values.

As an example of the simulation tests, the current data was syn-
thesized by adding together four sine waves with random initial
phases. The frequencies of the sine waves were 0.001, 0.01, 0.1,
and 1 Hz, with an amplitude of 10 A. The time interval of the cur-
rent data was 100 ms.  The selected frequencies and the amplitudes
are representative values for traction battery applications. Model
parameters were prescribed as:

R = 0.0024 ˝,  Rct c = Rct d = 0.0032 ˝,

Cc = Cd = 4500 F, Voc = 3.6 V.
Using the data stream and the selected parameters, the system
voltage was  calculated using the circuit model and is shown in
Fig. 3. Next, I and V data were input into the algorithm to obtain
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Fig. 3. Synthesized current data and deduced voltage data from the ideal circuit
model depicted in Fig. 1.
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The cycling process was initiated (after at least 10 min  of
cycling). The battery voltage and current was updated every
125 ± 5 ms.

Table 1
Initial (seed) values and bounds for the parameters used for the regression of the
DD  algorithm.

Quantity (units) Initial value Boundary values
[min, max]

R (m�)  4 [0.4, 40]
Rct c (m�) 2.5 [0.25, 25]
Rct d (m�)  2.5 [0.25, 25]
Cc (F) 4000 [400, 40,000]
Cd (F) 4000 [400, 40,000]
Voc (V) Measured voltage − value at t = 0 [2.7, 4.1]
w  (weighting factor) 0.995
Ah nominal (Ah) 5.6
Vmin (SOC) (V) 2.7
Fig. 4. Regression of the model parameters based on the simulated I–V data.

he regressed model parameters shown in Fig. 4. The initial values
f the parameters were chosen to be

 = 0.004 ˝,  Rct c = Rct d = 0.0025 ˝,  Cc = Cd = 4000 F

nd the initial Voc was set equal to the first value of the voltage data.
he forgetting factors were set to 0.999 for every parameter. As seen
n Fig. 4, the regressed values of the parameters are almost identi-
al to the selected values, demonstrating the algorithm’s accuracy
n parameter regression. We  also found that the regression was
ffectively insensitive to the initial values.

. Experimental setup

In order to evaluate the algorithm in predicting real-time bat-
ery states under simulated driving conditions, the algorithm was
mplemented and integrated with the battery testing system, or

 Hardware-in-the-Loop (HWIL) system. [31] The architecture of
he HWIL consists of three components: the electrochemical cell
EC) interface, the vehicle model, and the HWIL controller. The EC
cts as an environmental interface to the electrochemical cell under
est, and its main facilities include a single-channel tester (BT2000,
rbin Instruments) that provides up to 5 kW at potentials between
.6 and 5 V ± 1 mV  and current ranges up to 1 kA ± 10 mA,  and a
hermal control chamber for accommodating the battery with a

◦ ◦
rogrammable range from −40 to 130 C (resolution of ±10 C). All
ests were conducted at room temperature. The vehicle model used
as the Hybrid Powertrain Simulation Program (HPSP) provided

y GM.  HPSP was applied to provide electric-power requirements
Fig. 5. The Milford city driving (power) profile used by HPSP vehicle model to gen-
erate the power requirement from the battery.

based on specific driving profiles. The HWIL controller also served
as the command center in safeguarding the process. For example,
in a cycling process, as a power request is received from HPSP, the
HWIL controller analyzes the request and, if valid, sends the request
to the EC interface, receives the I–V–T response from the interface,
iterates through the algorithm with the I–V–T data, and provides
feedback to the HPSP for its preparation of its next power request.
Concurrently, the HWIL controller must continuously monitor the
system to ensure operation within specified limits so as to avoid cell
abuse. The communications between the above mentioned mod-
ules are realized with TCP/IP protocols. The temporal jitter of the
recorded data is about a few milliseconds.

The battery used in the experiments was a single-cell lithium ion
battery (Hitachi Automotive Products, model #A23-06H04-G00),
which has a nominal capacity of 5.6 Ah and a voltage range of
2.7–4.1 V. A driving profile as shown Fig. 5, termed the Milford city
profile, was used by HPSP to submit the power demand to the cell.
The algorithm was tested by comparing predicted and measured
SOC and SOP values with the following procedures.

An initial SOC value was  randomly selected (ranging between
30% and 70%), and the corresponding open circuit potential Voc

obtained via the look-up table of the voltage-based state of charge.
The battery was charged or discharged with a current rate of C/6
until reaching the value of Voc, where it was allowed to rest for
20 min (to render an accurate estimation of the initial Voc).
Vmin (power) (V) 2.9
Vmax (power) (V) 4.0

The forgetting factor for each parameter was set to 0.999 in this work.
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nterface during the cycling process.

The cycling process was stopped at a random time determined
uring the initial cycling process, and a choice of test (either SOC
est, max  charge power test, or max  discharge power test) was
andomly selected.

In the case of the SOC test, the battery was  rested for 1 h at
he randomly selected time, and then discharged with a constant
urrent rate of C/3 until battery voltage dropped to its minimum
alue of 2.7 V. The SOC was deduced by multiplying the discharge
urrent with the discharge time divided by the battery’s capacity.

The charge or discharge power tests were performed by com-
anding the maximum or minimum voltage, respectively, on the

attery and tracing its current as a function of time. The charge or
ischarge power capability as a function of time was  determined

y multiplying the current-time projection with the maximum or
inimum voltage, respectively.
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ig. 7. The regressed parameters as the function of time during the cycling process
or  a random test.
Fig. 8. The predicted SOC, charge and discharge power projections at t = 0.5, 2, and
10  s during the cycling process.

5. Experimental results and discussions

Initial execution of the DD algorithm for regressing the model
parameters in real-time requires setting values for certain param-
eters and their allowed bounds. This is necessary since in a real
vehicle environment, noise due to electro-magnetic interference
(EMI) may  lead the regression to spurious predictions. The initial
value and allowable value (boundaries) of each parameter used in
the experiments are tabulated in Table 1. As shown in the table, the
upper and lower boundaries for the parameter values are set to be
ten times larger or smaller than the initial values. In the present
work, all �s were set to 0.999 for simplicity. The initial value of
the parameter Voc was  set to be the measured �t = dt/1 − � = 125 s
voltage at the start of the regression. The sampling period dt was
125 ms,  thus was approximately the time-duration over which past
data impact the regression (cf. Eq. (12) in Ref. [29] and discussions
therein). It should be noted; however, the algorithm keeps the capa-
bility in fine-tuning each � to improve the regression accuracy. For
instance, the value of � for Voc would be set smaller to capture fast
SOC variations with current.

As an example of a random trial, a test of charge power capa-
bility is highlighted in detail before discussing the final random
test results. Fig. 6 depicts the measured current and voltage of
the battery during the cycling process. Based on initial values,
boundary conditions, forgetting factors of the parameters and the
updated variables I, V of the battery, the DD algorithm regressed
the model parameters recursively with their final values depicted
in Fig. 7. As shown in the figure, the high-frequency resistance R
remains almost the same throughout the driving process, consis-
tent with a constant number of charge carriers in the electrolyte

phases, and little change in the solid phase electronic resistance
in the lithium ion battery. The open-circuit potential Voc increases
slightly due to the fact that the driving profile has more charge cases
than discharge cases. There are quantitative differences between
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Table 2
The comparison between the predicted powers with the measured powers at three
different projected times after the 1200s of excitation depicted in Fig. 8 (cf. Fig. 9).

Projected time Predicted power Measured power Difference

0.5 s 687.1 W 683.1 W 0.5%
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he regressed charge and discharge parameter values for charge-
ransfer resistance and capacitance. All parameters were regressed
ithin their preset boundary values, indicative of algorithm stabil-

ty. The discharge parameters have some cusps at the beginning of
he cycling process because there was not enough discharge infor-

ation to enable a stable regression. With the updated parameters,
he algorithm predicted SOC and SOP real-time with the results
hown in Fig. 8. The SOC increases in the beginning period of 200 s
nd then remains nearly constant, consistent with the driving pro-
le. As mentioned earlier, the DD algorithm uses Eqs. (9)–(11) to
redict power capabilities. Fig. 8 demonstrates the predicted SOCs

s well as charge and discharge power projections at t = 0.5, 2, 10 s
uring the cycling process. At the end of the cycling, as the cycling
uration reached 1200s in this example, the charge power test
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ig. 10. Summary of random SOC tests. Each square corresponds to a randomly
elected point within the cycle to perform the SOC test, with the measured value
rovided by the abscissa; the algorithm-predicted SOC for the test is provided on
he ordinate.
Fig. 11. Summary of random tests for the 2 s SOP tests. Each square corresponds to
one  of the random tests; algorithm-predicted 2 s power projections correspond to
the ordinate, and the abscissa values reflect measurements.

was performed on the battery with results presented in Fig. 9. In
the measurement, the battery voltage was  clamped to 4 V, corre-
sponding to the maximum voltage Vmax used in the algorithm for
calculating the power capabilities. The battery’s current, and con-
sequently the power, were then sampled with 0.1 s interval and
recorded for 10 s. Predicted values of the charge power were com-
pared with the measured values, and the results are presented
in Table 2. The measured values agree with the predicted values
for the 0.5 s and 2 s power results, while the 10 s power projec-
tions show a larger deviation. In general, SOP prediction accuracy
is greater for shorter time intervals; the short-term power is mainly
determined by the high-frequency resistance R, and the regression
of R is stable and accurate, leading to accurate short-term power
predictions.

Figs. 10–12 summarize the results of 150 random tests on SOC
and SOP. Each data point in the figures corresponds to a random
test. In Fig. 10,  the predicted values of SOC are within ±3% accu-
racy relative to the measured values. The errors are likely due to

numerical errors in coulomb integration. Since the weighting fac-
tor w was initialized with 0.995 in the algorithm, the agreement
of SOC results verifies that for this battery, the SOC  is dominated
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to  the ordinate, and the abscissa values reflect measurements.
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y coulomb counting. Fig. 11 demonstrates the predicted 2 s power
rojections against the measured values. The positive values cor-
espond to charge power tests, while the negative values refer to
ischarge power tests. The charge power projections are quite accu-
ate, while the discharge power projections are larger than those
easured. The deviations tend to grow as the power magnitude

ncreases. Fig. 12 compares the predicted 10 s power projections
ith measured values. Similar to the 2 s results, predictions of the

harge power capabilities are excellent, while the predicted dis-
harge powers are larger than those measured, and the deviation
ecomes larger as the power magnitude increases.

. Summary and open questions

A multi-parameter battery state estimator has been developed
nd tested on lithium ion batteries in a vehicle environment. The
lgorithm is based on the adaptive and direct solution of the
overning differential equations that characterize the equivalent
ircuit representation of the battery. We  refer to the approach
s a direct differential algorithm. The results appear to be quite
romising. The algorithm predicts the lithium ion battery SOC
uantitatively. The 2 s power prediction is excellent on charge and
ood on discharge. The 10 s power prediction is again quite good
n charge; however, further improvement is desirable for discharge
ower projection.

The DD algorithm appears to represent a significant improve-
ent over our existing superposition integral algorithm. The DD

egression is much more stable over representative cycling pro-
esses and did not exhibit severe sensitivity to initial (seed) values.

e believe the DD algorithm will find broader application in
attery-control systems. It should be noted that all the experiments
re conducted in the lab environment and sensor noises are not crit-
cal. In a real vehicle environment with substantial signal noises, a
alman filter may  need to be included to optimize the regression.

There are several open issues relative to improving the algo-
ithm.

The SOH issue. How to estimate SOH in the DD algorithm was
eglected. SOH is related to battery aging and is much more difficult
o predict than SOC and SOP. The aging mechanisms are compli-
ated and may  be different for each type of lithium ion battery.
n Ref. [10], the SOH was defined as SOH ≡ Rnominal(T, SOC)/R(T,
OC). This definition captures the mechanism that the aging is
ainly due to the electrode degradation with time, commensurate
ith the increase of the high-frequency resistance. However, for

ome lithium ion batteries, aging is mainly due to the decrease of
ctive lithium ions within the battery (capacity loss) and the high-
requency R does not change much. In this case, the aging symptom

ainly manifests in the decrease of the battery capacity Ah. We
re investigating the possibility of monitoring the Ah change, and
herefore SOH, with the DD algorithm.

Forgetting factors �. As mentioned in previous sections, varying
he values of � can influence the regression of the DD algorithm.

owever, the optimization of the values of � is strongly dependent
n the sampling rate as well as driving profile. It may  be much
ore meaningful to dynamically adjust the values of � based on

he skewness of the driving profile, and this should be investigated.

[
[
[

urces 196 (2011) 8735– 8741 8741

10 s power deviation. As the power tests have shown, the 10 s dis-
charge power projections are larger in magnitude than measured
values and the deviation is more severe as the magnitude increases.
We have found that this is not due to the algorithmic approach;
rather, it is due to the limitation of the single-RC-circuit model.
For the batteries we have tested, diffusion phenomena become
important in the discharging case beyond a few seconds.
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